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Abstract

This paper presents a summary of a time harmonic
analysis of vector electromagnetic scattering from a
finite conducting circular cylinder for an arbitrarily
oriented electric dipole source. The method uses the
classical separation of variables method with a Fourier
series angular mode series and a Fourier integral
representation over axial wave numbers. Several
numerical checks are made to validate the resulting
numerical algorithms for both incident and total fields
for all six complex electromagnetic field components
and for all three independent source polarizations.

Introduction

The classical problem of electromagnetic scattering from
a finite conducting cylinder for an arbitrarily oriented
electric dipole has been studied by many authors. Papas
(Papas, 1950) gave the scalar solution for a line source
parallel to the cylinder axis and determines both low
and high frequency limits. Wait in his book Scattering
from Cylindrical Structures considers vector axial dipole
scattering from a circular wedge region (Wait, 1959). The
three-dimensional scattering case for an axial oriented
electric dipole is also known (Tsandoulas,1968). In his
book on dyadic Green’s functions C.T. Tai (Tai, 1971)
formulates the dielectric cylinder scattering problem for
an arbitrary source dyad. The results however are
not complete for computation. A more recent work
(Hongo, 2008) derives the general expressions for perfectly
conducting and impedance boundary conditions for the
electromagnetic field in cylindrical coordinates for an
arbitrary oriented electric dipole. The purpose here is to
derive, code and numerically evaluate the yet more general
case of the classical separation of variables technique for
a finite conducting cylinder illuminated by an arbitrarily
oriented electric dipole. It seems surprising that this result
is evidentially not generally available in the literature. In
this era of general 3D numerical electromagnetic solvers
the result is perhaps no longer important computationally
except as a check on more general numerical methods.
The motivation here is to validate the accuracy of our finite-
difference frequency-domain electromagnetic solver.

Theory

The formulation of electromagnetic fields in cylindrical
geometry for axi-symmetric scatters is simplified by using
the axial components (Ez,Hz) as potentials. For example,
this is common practice in the analysis of fiber optical
waveguides (Okamoto, 2006). The cylindrical geometry of
the problem prompts using a Fourier representation for a
generic component A(ρ,φ ,z) of the form

A(ρ,φ ,z) =
∞

∑
n=−∞

einφ

∫
∞

−∞

Ãn(K,ρ)eiKz dK
2π

. (1)

It is convenient to represent the electric dipole fields in
cylindrical coordinates using axial components Ez(ρ,φ ,z)
and Hz(ρ,φ ,z). A time harmonic factor of e−iωt is assumed
and suppressed. The magnetic permeability is assumed
constant and equal to the vacuum value µ0 = 4π10−7 [H/m].
The six curl Maxwell equations are solved for the φ and ρ

components in terms of the source and z field components
to obtain

Ẽnφ = 1
γ2

[
−iωµ0(

∂ H̃nz
∂ρ

+ J̃nφ )− nK
ρ

Ẽnz
]
,

Ẽnρ = 1
γ2

[
iωµ0(

in
ρ

H̃nz− J̃nρ )+ iK ∂ Ẽnz
∂ρ

]
.

H̃nφ = −1
γ2

[
iK (−in

ρ
H̃nz + J̃nρ )+ σ̃

∂ Ẽnz
∂ρ

]
,

H̃nρ = 1
γ2

[
iK ( ∂ H̃nz

∂ρ
+ J̃nφ )+

inσ̃

ρ
Ẽnz
]
.

(2)

where the associated axial fields are

w d
dw
(
w dẼnz

dw
)
+(w2−n2)Ẽnz

= −1
σ̃

[
w2 J̃nz +

iKw
γ

d
dw (wJ̃nρ )− nKw

γ
J̃nφ

]
,

w d
dw
(
w dH̃nz

dw
)
+(w2−n2)H̃nz

= −w
σ̃

[ d
dw (wJ̃nφ )− in J̃nρ

]
.− nKw

γ
J̃nφ

]
.

(3)

Note the left hand sides of the two ordinary second
order differential equations in (3) are solutions to Bessel’s
equation of order n for the independent unit-less radial
variable w = γρ. The right hand sides are the known dipole
source currents. Here γ = (k2−K2)1/2 and Im(γ) ≥ 0. The
solution of equation (3) for a z directed dipole is

Ẽ(0,z)
nz = −ωµ0γ2

4k2 I0d`e−inφT e−iKzT Jn(γρ<)H(1)
n (γρ>) ,

H̃(0,z)
nz = 0 .

(4)
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The remaining source polarizations are more difficult
to evaluate because they involve the derivative of the
Dirac delta function. The derivatives are interpreted by
integration by parts, i.e., for ε > 0 and assuming f (x′) is
continuous at x′ = x,

∫ x+ε

x−ε

f (x′)δ
′(x′)dx′ =− f (x) . (5)

For φ directed dipoles we find

Ẽ(0,φ)
nz = ωµ0n K

4k2 ρT
I0d`e−inφT e−iKzT Jn(γρ<)H(1)

n (γρ>) ,

H̃(0,φ)
nz = −iγ

4 I0d`e−inφT e−iKzT Jn(γρ<)H(1)
n
′
(γρ>) , ρ < ρT ,

= −iγ
4 I0d`e−inφT e−iKzT J′n(γρ<)H(1)

n (γρ>) , ρ > ρT ,
(6)

and similarily the ρ-directed dipole results are

Ẽ(0,ρ)
nz = iωµ0Kγ

4k2 I0d`e−inφT e−iKzT Jn(γρ<)H(1)
n
′
(γρ>) , ρ < ρT ,

= iωµ0K γ

4k2 I0d`e−inφT e−iKzT Jn
′(γρ<)H(1)

n (γρ>) , ρ > ρT ,

H̃(0,ρ)
nz = n

4ρT
I0d`e−inφT e−iKzT Jn(γρ<)H(1)

n (γρ>) .

(7)

Given source fields Ẽ
(0,q)
nz ,H̃

(0,q)
nz where

Ẽ(0,q)
nz = E

(0,q)
nz Jn(γ2a) ,

H̃(0,q)
nz = H

(0,q)
nz Jn(γ2a) ,

(8)

and where q = ρ,φ ,z designates source orientation,
we solve for the 4 unknown amplitudes
Ẽ
(i,q)
nz ,H̃

(i,q)
nz , Ẽ

(s,q)
nz ,H̃

(s,q)
nz for respectively internal and

secondary field amplitudes for a circular finitely conducting
cylinder.

The resulting matrix equation is

4

∑
j=1

Ai j x j = bi , i = 1,2,3,4 , (9)

for unknown coefficients

x1 = E
(s,q)
nz ,

x2 = H
(s,q)

nz ,

x3 = E
(i,q)
nz ,

x4 = H
(i,q)

nz ,

(10)

where coefficient matrix is

A=


H(1)

n (Ω2) 0 −Jn(Ω1) 0
0 H(1)

n (Ω2) 0 −Jn(Ω1)
−nK
γ2

2 a H(1)
n (Ω2)

−iωµ0
γ2

H(1)
n
′
(Ω2)

nK
γ2

1 a Jn(Ω1)
iωµ0

γ1
Jn
′(Ω1)

−σ̃2
γ2

H(1)
n
′
(Ω2)

−nK
γ2

2 a H(1)
n (Ω2)

σ̃1
γ1

Jn
′(Ω1)

nK
γ2

1 a Jn(Ω1)


(11)

and for right-hand-side elements

b1 = −E
(0,q)
nz Jn(Ω2) ,

b2 = −H
(0,q)

nz Jn(Ω2) ,

b3 = iωµ0
γ2

H
(0,q)

nz Jn
′(Ω2)+

nK
γ2

2 a E
(0,q)
nz Jn(Ω2) ,

b4 = nK
γ2

2 a H
(0,q)

nz Jn(Ω2)+
σ̃2
γ2

E
(0,q)
nz Jn

′(Ω2) .

(12)

The formal solution to matrix equation (9) for exterior field
amplitudes is

E
(s,q)
nz =N1/(∆A24) ,

H
(s,q)

nz =N2/(∆A13) ,
(13)

and

N1 =(A24A42−A22A44)(b3A13A24−b1A24A33−b2A13A34)−
(A24A32−A22A34)(b4A13A24−b1A24A43−b2A13A44) ,

N2 =(A13A31−A11A33)(b4A13A24−b1A24A43−b2A13A44)−
(A13A41−A11A43)(b3A13A24−b1A24A33−b2A13A34) ,

(14)

where determinant ∆ = det(A) is

∆=(nKa)2(1/Ω2
2−1/Ω2

1)
2 J2

n (Ω1)H
(1)2
n (Ω2)−(

Jn(Ω1)H
(1)
n
′
(Ω2)/Ω2−H(1)

n (Ω2)Jn
′(Ω1)/Ω1

)(
Ω2

2Jn(Ω1)H
(1)
n
′
(Ω2)/Ω2− (k1a)2H(1)

n (Ω2)Jn
′(Ω1)/Ω1

)
,

(15)

and Bessel function arguments are defined as

Ω j = γ ja , j = 1,2 . (16)

The associated internal axial field coefficients for ρ < a are

E
(i,q)
nz =

(
E
(0,q)
nz Jn(Ω2)+E

(s,q)
nz H(1)

n (Ω2)
)
/Jn(Ω1) ,

H
(i,q)

nz =
(
H

(0,q)
nz Jn(Ω2)+H

(s,q)
nz H(1)

n (Ω2)
)
/Jn(Ω1) .

(17)

Then, for example, from equation (1), the radial component
of the electric field for a q directed dipole source is

E(s,q)
ρ (ρ,φ ,z) =

∞

∑
n=−∞

einφ

∫
∞

−∞

E
(s,q)
nρ Jn(γ2ρ)eiKz dK

2π
, (18)

and similarly for all other components.

Numerical Results

The formulation of incident field representations of the form
given for example by equation (18) are compared with their
more simple rectangular coordinate closed form solutions.
This checks both the algebra and the numerical algorithms
used to evaluate the transforms for all six field components
and three polarizations. All six components of E(0) and H(0)

for the Cartesian and Fourier-Bessel expansions for a φ

oriented electric dipole are compared, but here only E(0,φ)
ρ

is displayed. The source frequency is 1 Hz as appropriate
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Figure 1: Magnitude and phase comparison of Cartesian
and Fourier-Bessel series representations of E(0,φ)

ρ (x,y) for
z = 0.
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Figure 2: Magnitude boundary condition verification for the
four tangential field components at the cylinder interface as
a function of the angular ordern and z wavenumber K.

for sea-bed logging, the background conductivity is 0.1
S/m,

and the dipole source amplitude is I0 d` = 1 A. The source
dipole is located at ρT = 1.0× 104 m, φT = 0 radians, and
zT = 0 m. The observation point is z = 0 with (x,y) as
independent variables in the figures. Fourier transform
uses a compound two 128 point real-axis Gauss-Legendre
weights and abscissa integration with respectively finite
intervals [−κ,0] and [0,κ] to more accurately track more
rapid integrand variation for |K|< max(|k1|, |k2|). Upper limit
κ is chosen such that the Hankel functions H(1)

n exponential
factor has value |eiγρmin | = 1.0× 10−8. Note that for this
polarization the incident field components E(0,φ)

z ,H(0,φ)
ρ and

Figure 3: Real and imaginary parts of total and incident
components of Eφ as function of (x,y). Left-hand-side plots
are total fields, right- hand- side are incident fields.

H(0,φ)
φ

are correctly zero to machine precision. Similar
accuracy is observed but not plotted for the remaining six
field components for the ρ and z polarizations.

Figure 4: Real and imaginary parts of total and incident
components of Hz as function of (x,y). Left-hand-side plots
are total fields, right- hand- side are incident fields.

The four by four matrix equation (9) is ill-conditioned
prompting the use of truncated singular value
decomposition (TSVD) (Golub, 1989) rather than Cramer’s
rule analytical result as given by equation (14). The TSVD
trucation parameter here is tiny = 1.0× 10−14. The four
sub-plot dependent functions are of the normalized form
(|left−hand−side)/right−hand−side)− 1|. The plots show
between 9 and 12 figure agreement with the greatest
errors typically where magnitudes of n is large and K is
small.
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Here, for lack of space, only two components of the
total fields are displayed. Fig. 3 plots the real and
imaginary parts of total and incident components of Eφ

as a function of (x,y). The presence of the cylinder is
prominent. Fig. 4 plots the real and imaginary parts of the
total and incident components of Hz as a function of (x,y).
This component shows complicated angular field structure
inside the cylinder prompting the use of a Lanczos filter
(Hamming, 1983). Comparison of the real and imaginary
parts of the total field component Hz displays the expected
einφ behavior : relative maxima of the real part corresponds
to relative minima of the imaginary part. For this ρ directed
dipole, the field components Ez, Hρ and Hφ are not excited
and as in the case of the incident field comparisons are
computed to be machine zero.

Conclusions and Recommendations

This report gives a concise angular harmonic development
of vector electromagnetic field scattering from a permeable
and conducting cylinder for all possible orientations of an
electric dipole source. The motivation here is to have
an analytic model for a finite cross section anomaly with
which to compare more general vector field finite-difference
frequency domain solvers. In common with fiber optical
waveguide formulations, all fields are represented in terms
of the axial components (Ez,Hz). Matching boundary
conditions in the transform domain for each angular index n
and Fourier transform variable K leads a set of possibly ill-
conditioned 4x4 matrices. The solutions to these equations
are validated numerically. Solution of the matrix equations
use TSVD. All six components of the Fourier- Bessel
expansions for incident field, and for each of the three
independent polarizations are validated numerically by
comparisons with their analogous rectangular coordinate
closed form representations.

A possible relatively straight-forward modification is to
extend the results for internal dipole sources. Depending
on the orientation and location of the so synthesized
extended source, integrate the electric dipole components
around a closed loop inside the cylinder, and then compute
the resulting magnetic flux at a receiver loop. This
model then can compute the exact borehole fields for tri-
axial induction arrays as now used in the well logging
industry. Such results could then be used for environmental
borehole and standoff corrections. In addition, the results
could be used to check the accuracy of the commonly used
magnetic dipole approximations.
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